Natural history

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/animal/Anura
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Also known as: Anura, anuran, salientian
Either also called:
anuran or salientian

Reproduction

Breeding behaviour

The breeding behaviour is one of the most distinctive attributes of the Anura. Because the eggs can develop only under moist conditions, most frogs place their eggs in bodies of fresh water. Many species congregate in large numbers at temporary pools for short breeding seasons. Others breed along the mountain streams where they live year-round. In the latter species and in those that breed on land, there is no great concentration of breeding individuals at one place. In all cases, the mating call produced by the male attracts females to the breeding site. It has been observed in the field and in the laboratory that the females can discriminate between mating calls of their own species and those of other species. At a communal breeding site, such as a pond, swamp, or stream, differences in specific calling sites of the males help the frogs to maintain their identities (see Sidebar: Singing a Different Tune: Intraspecific Competition in Tungara Frogs). Differences in mating calls, however, constitute the principal premating isolating mechanism that prevents hybridization of closely related species living in the same area and breeding at the same time and place. Frogs have rather simple vocal cords, in most species a pair of slits in the floor of the mouth opening into a vocal pouch. Air is forced from the lungs over the vocal cords, causing them to vibrate and thus produce sound of a given pitch and pulsation. The air passes into the vocal pouch, which, when inflated, acts as a resonating chamber emphasizing the same frequency or one of its harmonics. In this manner, different kinds of frogs produce different calls.

Most frogs are considered to be placid animals, but recent observations have shown that some species exhibit aggressive behaviours, especially at breeding time. Male bullfrogs (Lithobates catesbeianus) and green frogs (Rana clamitans) defend calling territories against intrusion by other males by kicking, bumping, and biting. The South American nest-building hylid, Hyla faber, has a long, sharp spine on the thumb with which males wound each other when wrestling. The small Central American Dendrobates pumilio calls from the leaves of herbaceous plants. Intrusion into a territory of one calling male by another results in a wrestling match that terminates only after one male has been thrown off the leaf. Males of the Central American dendrobatid Colostethus inguinalis have calling sites on boulders in streams. The intrusion by another male results in the resident uttering a territorial call, and, if the intruder does not leave, the resident charges him, attempting to butt him off the boulder. Females of the Venezuelan C. trinitatus wrestle in defense of territories in streambeds.

Females move toward and locate calling males. Once the male clasps the female in a copulatory embrace called amplexus, she selects the site for depositing the eggs. In the more primitive frogs (the families Ascaphidae, Leiopelmatidae, Bombinatoridae, and Discoglossidae and the mesobatrachians), the male grasps the female from above and around the waist (inguinal amplexus), whereas in the more advanced frogs (neobatrachians) the position is shifted anteriorly to the armpits (axillary amplexus). The latter position brings the cloacae of the amplectic pair into closer proximity and presumably ensures more efficient fertilization.

Egg laying and hatching

Most frogs deposit their eggs in quiet water as clumps, surface films, strings, or individual eggs. The eggs may be freely suspended in the water or attached to sticks or submerged vegetation. Some frogs lay their eggs in streams, characteristically firmly attached to the lee sides or undersides of rocks where the eggs are not subject to the current. The large pond-breeding frogs of the genus Rana and toads of the genus Bufo apparently produce more eggs than any other anurans. More than 10,000 eggs have been estimated in one clutch of the North American bullfrog, L. catesbeianus. The habit of spreading the eggs as a film on the surface of the water apparently is an adaptation for oviposition in shallow temporary pools and allows the eggs to develop in the most highly oxygenated part of the pool. This type of egg deposition is characteristic of several groups of tree frogs, family Hylidae, in the American tropics—one of which, Smilisca baudinii, is known to lay more than 3,000 eggs. Frogs breeding in cascading mountain streams lay far fewer eggs, usually no more than 200.

The problem of fertilization of eggs in rapidly flowing water has been overcome by various modifications. Some stream-breeding hylids have long cloacal tubes so that the semen can be directed onto the eggs as they emerge. Some other hylids have huge testes, which apparently produce vast quantities of sperm, helping to ensure fertilization. Males of the North American tailed frog, Ascaphus truei, have an extension of the cloaca that functions as a copulatory organ (the “tail”) to introduce sperm into the female’s cloaca.

Males of at least three South American species of Hyla build basinlike nests, 25 to 30 cm (10 to 12 inches) wide and 2 to 5 cm (1 to 2 inches) deep, in the mud of riverbanks. Water seeps into the basin, providing a medium for the eggs and young. Calling, mating, and oviposition take place in the nest, and the tadpoles undergo their development in the nest.

Some bufonoid frogs in Leptodactylidae and ranoid frogs in Ranidae and other families build froth nests. The small, toadlike leptodactylids of the genus Physalaemus breed in small, shallow pools. Amplexus is axillary, and the pair floats on the water; as the female exudes the eggs, the male emits semen and kicks vigorously with his hind legs. The result is a frothy mixture of water, air, eggs, and semen, which floats on the water. This meringuelike nest is about 7.5 to 10 cm (3 to 4 inches) in diameter and about 5 cm (2 inches) deep. The outer surfaces exposed to the air harden and form a crust covering the moist interior in which the eggs are randomly distributed. Upon hatching, the tadpoles wriggle down through the decaying froth into the water.

From tadpole to adult

Many frogs have an aquatic, free-swimming larval stage (tadpole). After a period of growth, the tadpole undergoes metamorphosis, in which the tail is lost and limbs appear. These are only two of the most obvious changes that take place. Tadpoles have a cartilaginous skeleton, thin nonglandular skin, and a long coiled intestine; they lack jaws, lungs, and eyelids. Among the first changes that take place is the appearance of hind limb buds, which grow and develop into differentiated hind limbs, complete with toes, webbing, and tubercles (small, round nodules). Much later the forelimbs emerge through the skin of the operculum (gill covering), and the tail begins to shrink, being absorbed by the body. The mouth of the tadpole begins to change; as the horny denticles (toothlike projections) and papillae, if present, disappear, the jaws and true teeth develop. The eyelids develop, and mucous glands form in the skin. The vertebral column and limb bones ossify, and the adult digestive system differentiates as the long coiled intestine shrinks to the short, thick-walled, folded intestine of the adult.

Just how and where the changes from larva to adult take place are highly varied—a fascinating aspect of the study of frogs. The differences in modes of life history reflect varied environmental conditions. In various evolutionary lines in frogs, there is a strong propensity to breed away from water.

The tadpoles of the pond breeders characteristically have rather large bodies and deep caudal (tail) fins, which in some have a terminal extension, as do the familiar swordtail fishes (Xiphophorus). The mouth is relatively small, either at the end of the snout or on the underside, and usually contains rather weak denticles. These tadpoles swim easily in the quiet water and feed on attached and free-floating vegetation, including algae. In contrast, the stream tadpoles have depressed bodies, long muscular tails, and shallow caudal fins. The mouth is relatively large and usually contains many rows of strong denticles. In highly modified stream tadpoles, the mouth is ventral and modified as an oral sucker, with which the tadpole anchors itself to stones in the stream. Such tadpoles move slowly across stones, grazing on the coating of bacteria and algae as they move.

Most tadpoles complete their development in two or three months, but there are notable exceptions. Tadpoles of spadefoot toads, genus Scaphiopus, develop in temporary rain pools in arid parts of North America, where it is imperative for the tadpoles to complete their development before the pools dry up. Some Scaphiopus tadpoles metamorphose about two weeks after hatching. In the northern part of its range in North America, the tadpoles of the bullfrog L. catesbeianus require three years to undergo their development.

Some tree frogs of the family Hylidae deposit their eggs in water that has pooled in parts of trees. Several tropical species of Hyla lay their eggs in the water held in the overlapping bases of leaves of epiphytic bromeliads high in trees. Their tadpoles, which are slender with long, muscular tails, develop in small quantities of water high above the ground. The Mexican hylid, Anotheca spinosa, lays its eggs in bromeliads or in water-filled cavities in trees. The small tadpoles, like those of Hyla, feed on aquatic insect larvae, such as those of mosquitoes, but the larger tadpoles of Anotheca apparently feed only on the eggs of frogs.

A modification of the basic pattern of depositing aquatic eggs is the placement of eggs on vegetation above water; this pattern occurs in some arboreal hylids, rhacophorids, ranids, and all species of the family Centrolenidae. H. ebraccata, a small Central American tree frog, deposits its eggs in a single layer on the upper surfaces of horizontal leaves, just a few inches above the pond. Upon hatching, the tadpoles wriggle to the edge of the leaf and drop into the water. The Mexican H. thorectes suspends 10 to 14 eggs on ferns overhanging cascading mountain streams. The phyllomedusine hylids in the American tropics suspend clutches of eggs from leaves or stems above ponds. Males call from trees; once a female has been attracted and amplexus takes place, the male placidly hangs onto the back of the female as she descends to the pond and absorbs water. This accomplished, she climbs into a tree, selects an oviposition site, and deposits eggs until her water supply is depleted. She again descends to the pond and repeats the performance at a different site until the entire complement of eggs is deposited. Upon hatching, the tadpoles drop into the pond below. Most of the tree frogs of the family Centrolenidae are less than 2.5 cm (1 inch) long. Males call from leaves of trees or bushes over cascading mountain streams in the American tropics. Individuals return to the same leaf night after night. Attracted females are clasped on the leaf, and egg deposition takes place there immediately. A highly successful male may have three or four egg clutches on his leaf, each consisting of only about two dozen eggs. Upon hatching, the tadpoles drop into the streambed; if a tadpole lands on a stone, it flips about vigorously until it falls into the water, where it hides in the loose gravel on the bottom of the stream.

Egg laying on land

Many kinds of frogs lay their eggs on land and subsequently transport the tadpoles to water. The ranid genus Sooglossus of the Seychelles islands and all members of the family Dendrobatidae in the American tropics have terrestrial eggs. Upon hatching, the tadpoles adhere to the backs of adults, usually males. The exact means of attachment is not known. The frogs carry the tadpoles to streams, bromeliads, or pools of water in logs or stumps where the tadpoles complete their development. The most unusual example of tadpole care is exhibited by the mouth-brooding frog, or Darwin’s frog, Rhinoderma darwinii, in southern South America. An amplectic pair deposits 20 to 30 eggs on moist ground. When the eggs are about ready to hatch, with the embryos moving, the male picks up some eggs with his tongue. The eggs pass through the vocal slits in the floor of his mouth and into the vocal sac. The eggs hatch, and the larvae complete their development in the large vocal sac. Upon metamorphosis the young frogs emerge from the male’s mouth.

The European midwife toad, Alytes obstetricans, also displays a curious breeding behaviour. Inguinal amplexus takes place on land; at the time of oviposition, the female extends her legs to form a receptacle for the string of 20 to 60 eggs. After fertilizing the eggs, the male moves forward on the back of the female and pushes his legs into the string of eggs until they are wound around his waist and legs. Then the female departs. The male carries the eggs with him on land until they are ready to hatch, at which time he moves to a pond where the eggs hatch and complete their development.

The hylid Gastrotheca marsupiata, one of several so-called marsupial frogs, lives in the high Andes of South America. During amplexus, the male exudes a quantity of semen, which flows into the female’s pouch. The female extrudes eggs a few at a time; these are pushed into her pouch by the male, who uses the hindfeet to catch and push the eggs. The eggs are fertilized in the pouch, where they hatch and the tadpoles begin their development. Subsequently the female moves to a pond, where the tadpoles emerge from the pouch and complete their development in the water.

In each of the above instances of parental care, there is a trend away from the aquatic environment. Far fewer eggs (fewer than 50) are laid in comparison with those species depositing eggs in the water. The bonds with the aquatic environment have been partially broken, for, although the tadpoles must develop there, the eggs are effectively terrestrial; however, they are not truly so, because they lack the necessary embryonic membranes (allantois and amnion) to maintain physiological balance, and they also have no shell. Consequently, if they are to survive and develop, the eggs must be maintained in moist places, such as damp soil or a part of the parental body. Water and waste products are transported through the membranes by osmosis.

Direct development from egg to froglet

The next evolutionary step in mode of life history is the elimination of the larval stage, thereby completely severing the ties with the aquatic environment. Direct development of the egg, in which the larvae undergo their development within the egg membranes and emerge as tiny froglets, occurs in many species, in a dozen or more families (such as Leiopelmatidae, Pipidae, Leptodactylidae, Bufonidae, Brachycephalidae, Hylidae, Myobatrachidae, Sooglossidae, Arthroleptidae, Ranidae, and Microhylidae). Typical direct development of terrestrial eggs occurs in the many species of the leptodactylid genus Eleutherodactylus of Central and South America and the West Indies. During axillary amplexus, the female deposits a clutch of eggs in a moist place (beneath a log or stone, amid leaf litter, in a rotting stump, in moss, or in a bromeliad). The parents depart, leaving the eggs to develop and subsequently hatch. In some Eleutherodactylus species and in the New Zealand leiopelmatid Leiopelma hochstetteri, the hatching froglet still has a tail. In Leiopelma, at least, vigorous thrusts of the tail are used to rupture the egg membranes. Soon after hatching, the tail is completely absorbed.

Brooding of terrestrial eggs is known in a few species. Females of two species of Eleutherodactylus that lay their eggs on leaves of bushes or trees sit on the eggs. Apparently this brooding serves to prevent desiccation of the eggs by dry winds. Females of the Papuan microhylid Sphenophryne lay their few eggs beneath stones or logs and sit on top of them until they hatch.

Direct development occurs in several species of hylid marsupial frogs (Gastrotheca) living in mountain rainforests in northwestern South America. In these frogs, amplexus is axillary, and the female raises her cloaca so that the eggs, which are extruded one at a time, roll forward on her back and into the pouch. There the eggs develop into froglets. Large, external, gill-like structures envelop the developing embryo. These structures, which are attached to the throat of the embryo by a pair of cords, apparently function in respiration. These frogs live high in trees and complete their life cycle without descending to the ground. Thus, they are rare in collections, and their biology is poorly known.

Some other South American genera of Hylidae also exhibit the phenomenon of direct development of eggs carried on the backs of the females. In Flectonotus and Fritziana the eggs are contained in one large basinlike depression in the back, whereas in other genera, such as the Surinam toad (Pipa pipa) and its relatives, each egg occupies its own individual depression. In Hemiphractus gill-like structures and cords similar to those in Gastrotheca are present. At hatching, the expanded gill adheres to the modified skin of the maternal depression and is attached to the young by the pair of cords. The female carries the young until they are sufficiently well developed to care for themselves. The manner of detachment of gill from female and young is unknown.

The strictly aquatic P. pipa of northern South America has direct development, in this case in the water. Eggs are carried in individual depressions in the back of the female. Amplexus is inguinal, and the pair rests on the bottom of the pond. The female initiates vertical circular turnovers, at the height of which she extrudes a few eggs. These are fertilized, fall against the belly of the then upside-down male, and are pushed forward onto the female’s back, where they adhere and become enclosed in tissue. When developed, the young frogs emerge from the skin of the female’s back.

The small African bufonids of the genus Nectophrynoides undergo internal uterine development in a fashion that is apparently similar to that of placental mammals. By some unknown means, fertilization is internal, and the young are born alive. It is noteworthy that the evolution of live birth has taken place independently in all three living orders of amphibians, for this phenomenon also occurs in salamanders and caecilians.

Feeding habits

The great majority of frogs feed on insects, other small arthropods, or worms, but some larger species eat vertebrates. The South American leptodactylid Ceratophrys varius and the large bufonid B. marinus eat other frogs and small rodents. The superficially similar Solomon Island ranid, Ceratobatrachus guentheri, and the South American hylids, Hemiphractus, eat other frogs. Large North American bullfrogs, L. catesbeianus, have been reported to consume other frogs, mice, small snakes, and even small turtles.