Evolution and paleontology

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/animal/malacostracan
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Malacostraca

The fossil record of the Malacostraca extends from the early Paleozoic Era (Early Ordovician Epoch, 488 million to 472 million years ago) to the present. The early phyllocarids (order Archaeostraca) had a body form which resembled the aquatic branchiocarid arthropods that were diverse in Cambrian seas, 542 million to 488 million years ago. Those primitive forms (e.g., Canadaspida) were not directly ancestral, however, since they lacked gnathobasic (chewing) head appendages (e.g., mandibles, maxillae) and other major characteristics of the true Crustacea. Malacostracans share a number of advanced characteristics with members of the enigmatic crustacean class Remipedia, including biramous antennules, a first trunk segment fused to the head, limbs modified as maxillipeds, and paired swimming appendages on all trunk segments posterior to the genital openings.

The first eucaridan malacostracans appear as fossils from the middle Paleozoic (Late Devonian Epoch, 385 million to 359 million years ago). These were burrowing, lobsterlike, protoglyphaeids with primitive, somewhat pincerlike walking legs and a tail fan with uropods. During the late Paleozoic (early Carboniferous through Permian Period, 359 million to 251 million years ago) malacostracans evolved rapidly, apparently in step with the proliferation of coastal vascular plants that formed a major new aquatic food resource. At least 16 new orders arose during that time, some members of moderate size, with both subcheliform and true pincerlike walking legs (e.g., Hoplocarida, Astacidea). In other, mostly smaller, bottom dwellers in brackish to fresh lagoons and estuaries (e.g., Hemicaridea, Syncarida, Mysidacea, Isopoda) the carapace and thoracic respiratory chamber were reduced or lost altogether, the eggs developed directly, within a thoracic brood pouch, and respiration and swimming propulsion became increasingly abdominal. At least eight primitive and unspecialized orders died out by the close of the Permian (e.g., aeschronectid stomatopods, Pygocephalomorpha, Belotelsonidea). During the Mesozoic heyday of the malacostrans, 251 million to about 65.5 million years ago, however, an equal number of new orders arose. With the evolution of the anomurans and true crabs during this era, the decapods diversified and grew to large sizes. All major amphipod suborders and infraorders are believed to have evolved by the Jurassic and Cretaceous periods. The isopods had diversified into their 10 existing suborders, including those fully parasitic on other crustaceans and fishes. All major continental fresh waters had been widely penetrated via estuaries and coastal groundwaters. Moist lands, then becoming forested with angiosperms, were being occupied by terrestrial isopods and amphipods.

With the subsequent cooling of coastal seas in the Paleocene Epoch, several malacostracan groups (e.g., asellote isopods, lysianassid amphipods, and anomuran decapods) proliferated in cold-water regions and in the deep sea. The amphipods became associated with mammals and tortoises, which first moved into their ancestral shallows, and coevolved with them to their specialized status as epiparasites of whales and marine turtles. Several malacostracan groups that had proliferated in the warm shallows of late Paleozoic and Mesozoic seas either disappeared or were reduced to a few relict species in deep or anoxic marine habitats (e.g., Lophogastrida, glyphaeid decapods, Leptostraca, Mictacea) or in continental groundwaters (e.g., Syncarida, Spelaeogriphacea, Thermosbaenacea). The isopods, decapods, and amphipods now make up 90 percent of all living malacostracans.

Classification

Diagnostic classification

Malacostracan characters used in diagnosis and classification include type of eye (stalked or sessile), type of antennule (one-, two-, or three-branched, with or without sensory structures), type of antenna (with or without accessory branch, sensory structures), mouthpart structure (including presence or absence of palps, plates, and spines that reflect feeding preferences), carapace (presence or absence, type), anterior segments (degree of fusion with head), anterior limb pairs (degree of modification as maxillipeds, gnathopods), posterior limb pairs (whether single- or double-branched, simple or pincerlike, bearing gills or not), male and female sex ducts (type and position of openings), segmentation (degree of fusion of segments), pleopods (whether annulate or flaplike, sexually modified or not, gill-bearing or not), uropods (present or not, single- or double-branched), and telson (bilobate or platelike, with or without furcae). In the classification below, a dagger () denotes an extinct group.

Annotated classification

  • Class Malacostraca
    Double- or triple-branched antennules; single-branched ambulatory (walking) limbs often equipped with pincers; thoracic and abdominal respiration; terminal body segment with uropods; carapace, variously reduced or lacking, does not cover thoracic limbs; larval development usually of an advanced free-swimming type (e.g., zoea) or often completed within the egg, in which case the first stage is an immature form of the adult; nauplius larva, when present, an advanced maxillopodan type lacking primitive frontal filaments but possessing specialized median eye; more than 29,000 species.
    • Subclass Phyllocarida
      Carapace large, appearing bivalved; thoracic legs with leaflike outer branch; abdomen 7-segmented, lacking uropods; anterior segments with pleopods (swimming legs). The earliest recognized malacostracans in the fossil record belong to this subclass. Most living representatives are bottom-dwelling suspension-feeders. About 20 species.
        • Order Archaeostraca
          Early Ordovician to Permian; carapace bivalved and hinged; both antennae with two branches; 6 families.
        • Order Hoplostraca
          Late Carboniferous; carapace short; antennae 2 one-branched, raptorial in form; 1 family.
        • Order Leptostraca (visored shrimp)
          Permian to Holocene; carapace large, not hinged; antennae 2 one-branched, slender; terminal abdominal segment with pair of large paddlelike branches; eggs brooded under carapace; marine; on muddy bottoms low in oxygen; intertidal to the deeps; about 15 species in 3 families.
    • Subclass Hoplocarida
      Late Devonian to Holocene; carapace large, not bivalved; rostrum hinged; antennules 3-branched; forward thoracic legs subchelate (clawlike); hind thoracic legs ambulatory (walking) or burrowing; abdomen large; pleopods bearing gills; terminal segment with large tail fan; 3 orders.
        • Order Aeschronectida
          Carboniferous; carapace covers entire thorax; thoracic legs without pincers; terminal body segment elongate; 3 families.
        • Order Palaeostomatopoda
          Late Devonian to Early Carboniferous; carapace covers thorax; anterior thoracic legs with claws; terminal body segment normal; 1 family.
        • Order Stomatopoda (mantis shrimps)
          Early Carboniferous, Mesozoic to Holocene; carapace short, exposing thoracic segments 5–8; first 5 pairs of legs clawlike, hind 3 stiltlike; terminal body segment normal; telson unbranched, simple; live in burrows or dens from which they dart forth to smash or spear prey with large clawlike second legs; mainly in tropical marine shallows; 4 superfamilies and 15 families, 350 species.
    • Subclass Eumalacostraca
      Late Devonian to Holocene; carapace (when present) not bivalved; rostrum fixed; first antenna 2-branched; thoracic legs with slender, many-segmented outer branch and stout, 7-segmented inner branch, often pincerlike, used in walking or food-gathering; 6 (rarely 7) abdominal segments, with pleopods and terminal uropods.
      • Superorder Syncarida
        Late Devonian to Holocene; carapace lacking; thorax and abdomen weakly separated; thoracic legs biramous, bearing gills but without pincer claws; abdomen 6-segmented; 150 species.
        • Order Palaeocaridacea
          Carboniferous to Permian; first thoracic segment not fused to head; abdominal pleopods 2-branched, flaplike; 4 families.
        • Order Anaspidacea (torrent shrimps)
          Triassic to Holocene; first thoracic segment fused to head; pleopods 1-branched, slender, multisegmented; fresh waters of Australia, New Zealand, and South America; 2 suborders and 4 families.
        • Order Bathynellacea
          Permian to Holocene; body minute; wormlike; blind; thorax of 8 segments; legs short, weak; abdomen nearly lacking pleopods; in groundwaters of all continents except Antarctica; 2 families.
      • Superorder Eucarida
        Carapace fused to thorax; thoracic legs usually with gills at bases; eggs usually hatch as free-swimming larvae.
        • Order Belotelsonidea
          Carboniferous; carapace large; thoracic legs 1-branched, simple, without pincers; pleopods flaplike; telson with furcae; 1 family.
        • Order Euphausiacea (krill)
          Carboniferous? to Holocene; carapace not covering leg bases; 8 thoracic legs biramous, unspecialized, bearing tuffy gills; telson with furcae; long series of larval stages; marine, pelagic; 2 families, 85 species.
        • Order Amphionidacea
          Holocene; carapace large; thoracic legs 1-branched; in female, first pleopod expanded under carapace to enclose a brood pouch; deep-swimming, tropical marine.
        • Order Decapoda (shrimps, lobsters, hermit crabs, crabs)
          Carapace large, enclosing thorax and gill chamber; inner branch of thoracic legs strong, often pincerlike; first 2–3 pairs of thoracic legs smaller, modified as accessory feeding limbs (maxillipeds); uropods and telson usually forming broad tail fan; marine, some freshwater, a few terrestrial; about 10,000 species.
      • Superorder Pancarida
        • Order Thermosbaenacea
          (hot-springs shrimps). Holocene; minute; blind; wormlike; carapace short, forming dorsal brood pounch in female; thoracic legs weak, mostly 2-branched; lacking gills; pleopods weak or lacking; subterranean; about 15 species in 5 families.
      • Superorder Peracarida
        Carapace shortened, attached anteriorly to thorax, or lacking; eggs develop in ventral thoracic brood pouch and hatch as miniature adults.
        • Order Pygocephalomorpha
          Carboniferous to Permian; carapace large, unridged, covering thorax; ventral plates of thorax widening behind; walking legs 6-segmented; abdomen 6-segmented; coastal marine; 4 families.
        • Order Lophogastrida
          Late Carboniferous to Holocene; carapace large, ridged, covering thorax; ventral plates of thorax evenly widened; thoracic legs 7-segmented, weakly modified for grasping prey; abdomen basically 7-segmented; pleopods slender, branches segmented; deep-sea, free swimming; 3 families.
        • Order Mysidacea
          Jurassic to Holocene; carapace short, exposing hind segments; thoracic legs simple, 7-segmented; abdomen 6-segmented; pleopods usually reduced in female, hind pairs modified as claspers in male; brood plates on posterior legs only; marine, freshwater; about 800 species in 4 families.
        • Order Amphipoda (well shrimps, night shrimps)
          Eocene to Holocene; carapace lacking; eyes flat on head, not stalked; 7 pairs of 1-branched thoracic legs, each covered basally by a coxal plate; last 5 or 6 pairs bearing gill on inner side; first 2 pairs usually subcheliform (pincerlike); abdomen 6-segmented, with 3 forward pairs of slender, segmented swimmerets and 3 hind pairs of stiff uropods; telson basically bilobed; thoracic brood pouch; eggs hatch as miniature adults; marine, freshwater, one family terrestrial; about 6,200 described species in 4 suborders, 31 superfamilies, and 137 families.
        • Order Cumacea (tadpole shrimps)
          Carboniferous to Holocene; head and thorax short, deep; carapace enclosing functional respiratory chamber; abdomen slender; pleopods lacking in female; marine, burrowing in sediments; about 950 species in 9 families.
        • Order Mictacea
          Holocene; body elongate; carapace lacking; respiratory chamber vestigial; pleopods very reduced; marine; 2 families, 3 species.
        • Order Spelaeogriphacea
          Early Carboniferous to Holocene; body elongate; carapace short; thoracic legs slender, 2–4 with small outer branch; uropods broad; marine and freshwater; 2 families, 3 species.
        • Order Tanaidacea (tanaid shrimps)
          Early Carboniferous to Holocene; body small, cylindrical; eyes on small lobes; carapace short; second thoracic legs large and pincerlike in male; 5 pairs of pleopods; marine, brackish, rarely freshwater; about 550 species in 4 suborders and 21 families.
        • Order Isopoda (pill bugs, sow bugs, sea slaters)
          Body flattened dorsoventrally or cylindrical (greatly modified in parasitic members); carapace and respiratory chamber lacking; eyes sessile; 7 pairs of uniramous thoracic legs (some may be pincerlike), lacking gills; leg segment 3 elongate; pleopods broad, often with gills; marine, freshwater, and terrestrial; about 10,000 species in 10 suborders and 100 families.

Critical appraisal

The relationships among the various groups of malacostracan crustaceans are constantly undergoing revision in the light of new faunal discoveries and new taxonomic methodology, including the use of molecular techniques. The system used here is based on those developed by English biologist T. Cavalier-Smith (1998) and American paleontologist F.R. Schram (1986). The mainly fossil subclass Phyllocarida (with two noncrustacean groups removed) is here retained in the Malacostraca.

Edward L. Bousfield Kathleen Elizabeth Conlan