- Key People:
- Prince
- Herbie Hancock
- Yanni
- Brian Eno
- Billy Preston
- Related Topics:
- organ
- carillon
- piano
- electronic organ
- music synthesizer
- On the Web:
- VIVA's Pressbooks - Open Music Theory - The Keyboard and the Grand Staff (Dec. 27, 2024)
Principle of operation
Plucking mechanism
The sound of the wing-shaped harpsichord and its smaller rectangular, triangular, or polygonal relatives, the spinet and virginal, is produced by plucking their strings. The plucking mechanism, called a jack, rests on the key and consists of a narrow slip of wood with two slots cut into its top. The larger slot holds a pivoted tongue from which protrudes the quill, plastic, or leather plectrum that does the actual plucking; the smaller slot holds a piece of cloth that rests on the string and silences it when the key is not depressed. When the harpsichordist pushes down on a key, the back end rises, lifting the jack and forcing the plectrum past the string, plucking it. When he releases the key, the jack falls, and when the plectrum touches the string on the way down, it forces the pivoted tongue backward so that the plectrum can pass the string again without plucking it. Once the plectrum has passed beneath the string, a light spring made of bristle or metal pushes the tongue forward again. Finally, when the key is completely at rest, the cloth damper touches the string, silencing it. A wooden bar, padded on its underside, is placed over the jacks. The purpose of this bar is to prevent the jacks from flying out of the instrument and to limit the depth to which the keys can be depressed.
Although slight variations in loudness and timbre, or tone colour, can be obtained by differences in the firmness with which the harpsichordist depresses the keys, no sustained crescendos are obtainable by the action of the fingers alone. For this reason, most harpsichords made since about 1550 have had at least two strings and two jacks for each key. Each can be engaged or disengaged at will by a slight shift of the uppermost of two slotted guides through which the jacks pass. Moving the guide in one direction brings its entire row of jacks close enough to the strings for the plectra to pluck them; moving the guide in the opposite direction takes the jacks far enough from the strings so that the plectra cannot reach them. Two rows of jacks can provide three different levels of loudness or three differing tone colours, depending on whether the performer uses each row separately or both together.
Two-manual instruments
Even given two rows of jacks, it would not ordinarily be possible to produce the rapid changes in loudness required for pieces in echo style, for example, or to play loudly with one hand while providing a soft accompaniment with the other. To accomplish this, it is necessary to have two keyboards or “manuals,” one of which operates a single row of jacks while the other operates two or more. It then becomes possible to play loudly on one keyboard and softly on the other, either simultaneously or in rapid alternation. Two-manual harpsichords of this kind were invented at some point before 1620 in Flanders and gradually became known throughout the rest of Europe during the 17th century. These instruments commonly had three sets of strings, two unison sets at normal pitch (called eight-foot pitch because the low C at this pitch is produced by an organ pipe eight feet long) and a third set of shorter strings tuned an octave higher, or at four-foot pitch; this shorter set passed over its own bridge and was fastened to pins driven through the soundboard into a rail fixed to its underside. There were three rows of jacks. The front row plucked one set of unison strings and was made in such a way that it would be moved by the keys of both the upper and the lower keyboards. Both the middle and back rows operated from the lower manual only; the second row plucked the second set of unison strings, and the back row plucked the octave strings. For most purposes a one-manual harpsichord sufficed: each row of jacks provided a continuously changing tone colour from one end of the keyboard to the other, permitting individual lines in the music to be articulated clearly. For this reason, as well as because of their lower price, the old harpsichord makers built far more single-manual instruments than doubles, and many more singles survive today.
Couplers
There is, however, one type of music that can only be played on a two-manual instrument. Called in French the pièce croisée, this kind of music involves separate lines that cross and recross in the same range, frequently employing the same note either simultaneously or in close succession. The parts in such pieces cannot be distinguished when played on a single manual, and they cannot even be played on two manuals if the manuals are not completely independent. (For example, if a note is already being held on the lower manual, it cannot be restruck on the upper manual when the lower manual lifts the upper-manual jacks.) The solution to this problem was found in France in the 1640s. Instead of providing the upper-manual jacks with an extension that reached down to the keys of the lower manual, they were made to rest entirely on the upper-manual keys; the lower-manual keys were then fitted with small upright pieces of wood called coupler dogs, which reached upward toward the underside of the upper-manual keys. The upper manual was constructed to slide forward and back by about 1/4 inch. When it was pushed into the instrument, the coupler dogs were positioned below the back ends of upper-manual keys. As a result, when any lower-manual key was pushed down and its back end rose, the coupler dog would push up on the underside of the corresponding upper-manual key, lifting its jack as well. When one wished to uncouple the two keyboards in order to play pièces croisées, one could do so by pulling the upper manual outward. The coupler dogs then passed slightly beyond the ends of the upper-manual keys, so that they were not lifted when the lower-manual keys were depressed.
Two-manual harpsichords of this kind permit players to exploit the difference in the tone colours produced by the two rows, or “registers,” of unison jacks. This difference depends on the distance along the string at which it is plucked. The closer the plucking point is to the end of a string, the brighter is the sound; the farther away from the end that a string is plucked, the fuller and rounder the tone becomes, until one approaches the centre; plucking near the centre of a string produces a sweet, flutey, but somewhat hollow sound. In order to emphasize the difference in tone colours produced by the two rows of unison jacks, French harpsichord builders put the row of octave jacks between them, thereby increasing the distance between the two unison plucking points and the difference in tone of the two unison registers.