Maintenance problems
- Key People:
- Jeanne Villepreux-Power
- Philip Henry Gosse
- Related Topics:
- zoo
- oceanarium
News •
The design of a large aquarium must take into account the requirements of the specimens, especially since exhibits at modern aquariums include all types of aquatic organisms: mammals, birds, reptiles, amphibians, and invertebrates as well as fishes. Among the many factors that must be considered are traffic flow patterns of visitors, reflections off glass, acoustics, and tank-maintenance problems such as water clarity, dissolved wastes, temperature, tank decor, disease treatment, and nutrition.
The primary requirement for maintaining aquatic organisms is water quality. The water supply must be free of pollutants, including sewage and industrial wastes, and it should be in gaseous equilibrium with the atmosphere to ensure adequate oxygen and to avoid supersaturation with nitrogen. In recirculating systems, water treatment must not only ensure clarity of the water but also purification of metabolic wastes. The source of fresh water is usually water supplies from which chlorine and other additives have been removed, either by carbon filtration or by the addition of a chemical. Marine organisms can be maintained in either natural or artificial seawater; the latter has the advantage of being initially free from disease-causing organisms and pollutants but may not be as suitable for some organisms.
There are three basic types of water systems: open, closed, and semiclosed. In open systems the water flows through the aquarium once and is discarded. This provides water quality comparable to that of the natural environment and there is no buildup of toxic metabolic wastes; however, temperature control and pumping are usually costly, and filtration often is necessary.
Water is continuously recirculated in closed systems and is only renewed periodically. Metabolic wastes must be treated since they are not continuously flushed from the system. An important problem is that ammonia must be rapidly removed or transformed because it is harmful even at very low concentrations. In the aquarium the bacteria that convert ammonia to nitrite reside primarily in the filter material, and a slow sand filter with a large surface area is usually provided to ensure their abundance. Plant growth in the aquarium, especially in marine systems, is not usually sufficient to utilize all the nitrate produced by bacteria from nitrite. Although some aquariums have operated many years with a minimum of water renewal, it is normally necessary to replace from 1 to 10 percent of the water per month to maintain a low level of nitrates. The use of charcoal in both fresh water and seawater systems helps to slow the accumulation of nitrogenous wastes. Metabolic wastes also cause an increase in the acidity of the water. Carbonate compounds are commonly used to maintain an optimal level of acidity, particularly when water renewal is infrequent.
Semiclosed systems are essentially the same as closed except that there is a constant connection to the water supply, and the problem of dissolved wastes is controlled by the regular addition of new water; this system is less costly than the open one with regard to temperature control and pumping.
Filters vary from simple flow-through systems to completely automated recirculating systems, with special provisions for monitoring and controlling the physical and chemical characteristics of the water.
The turnover rate, or rate of water replacement, of individual aquariums is important and should be no more than two hours. In addition, aeration by means of air stones (diffusers) should be provided to guard against asphyxia in the event of an unexpected water-supply failure.
Fishes and invertebrates can also be maintained without filtration or aeration in aquariums that are “balanced” with plants; however, the balance between plants and animals is very difficult to attain on a large scale or even in a normally stocked aquarium, especially a seawater aquarium.
Freshwater pools for mammals and birds present special problems. They generally require a higher filtration rate and greater filter capacity because they accumulate large amounts of fecal wastes. Air-breathing animals, however, are not highly sensitive to water quality; thus, chemical treatments, such as chlorination, which would kill fishes, can be used to control bacteria and to improve water clarity. Seawater formulas are simpler; for example, a 2 percent sodium chloride solution will satisfactorily maintain whales and dolphins. Seals and sea lions have been kept in fresh water, but this may increase their eye problems because of the osmotic effect of the fresh water on the eye tissues.