Interior of the cranium

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/human-skeleton
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

Tobacco changed human skeletons, researchers say Dec. 15, 2024, 4:47 AM ET (Jerusalem Post)

The interior of the cranium shows a multitude of details, reflecting the shapes of the softer structures that are in contact with the bones.

The internal surface of the vault is relatively uncomplicated. In the midline front to back, along the sagittal suture, the seam between the two parietal bones, is a shallow depression—the groove for the superior longitudinal venous sinus, a large channel for venous blood. A number of depressions on either side of it mark the sites of the pacchionian bodies, structures that permit the venous system to absorb cerebrospinal fluid. The large thin-walled venous sinuses all lie within the cranial cavity. While they are thus protected by the cranium, in many places they are so close beneath the bones that a fracture or a penetrating wound may tear the sinus wall and lead to bleeding. The blood frequently is trapped beneath the outermost and toughest brain covering, the dura mater, in a mass called a subdural hematoma.

Conspicuous markings on the internal surface of the projection of the sphenoid, called the greater wing, and on the internal surfaces of the parietal and temporal bones are formed by the middle meningeal artery and its branches, which supply blood to the brain coverings. Injury to these vessels may lead to extradural hematoma, a mass of blood between the dura mater and the bone.

In contrast to the vault and sides of the cranium, the base presents an extremely complicated aspect. It is divided into three major depressions, or fossae, in a descending stair-step arrangement from front to back. The fossae are divided strictly according to the borders of the bones of the cranium but are related to major portions of the brain. The anterior cranial fossa serves as the bed in which rest the frontal lobes of the cerebrum, the large forward part of the brain. The middle cranial fossa, sharply divided into two lateral halves by a central eminence of bone, contains the temporal lobes of the cerebrum. The posterior cranial fossa serves as a bed for the hemispheres of the cerebellum (a mass of brain tissue behind the brain stem and beneath the rear portion of the cerebrum) and for the front and middle portion of the brain stem. Major portions of the brain are thus partially enfolded by the bones of the cranial wall.

There are openings in the three fossae for the passage of nerves and blood vessels, and the markings on the internal surface of the bones are from the attachments of the brain coverings—the meninges—and venous sinuses and other blood vessels.

Male muscle, man flexing arm, bicep curl.
Britannica Quiz
Facts You Should Know: The Human Body Quiz

The anterior cranial fossa shows a crestlike projection in the midline, the crista galli (“crest of the cock”). This is a place of firm attachment for the falx cerebri, a subdivision of dura mater that separates the right and left cerebral hemispheres. On either side of the crest is the cribriform (pierced with small holes) plate of the ethmoid bone, a midline bone important as a part both of the cranium and of the nose. Through the perforations of the plate run many divisions of the olfactory, or first cranial, nerve, coming from the mucous membrane of the nose. At the sides of the plate are the orbital plates of the frontal bone, which form the roofs of the eye sockets. Their inner surfaces are relatively smooth but have a number of sharp irregularities more obvious to the touch than to the sight. These irregularities mark attachments of dura mater to bone.

The rear part of the anterior cranial fossa is formed by those portions of the sphenoid bone called its body and lesser wings. Projections from the lesser wings, the anterior clinoid (bedlike) processes, extend back to a point beside each optic foramen, an opening through which important optic nerves, or tracts, enter into the protection of the cranial cavity after a relatively short course within the eye socket.

The central eminence of the middle cranial fossa is specialized as a saddlelike seat for the pituitary gland. The posterior portion of this seat, or sella turcica (“Turk’s saddle”), is actually wall-like and is called the dorsum sellae. The pituitary gland is thus situated in almost the centre of the cranial cavity. It is covered also by the brain coverings and has no connection with the exterior of the cranium except by blood vessels.

The deep lateral portions of the middle cranial fossa contain the temporal lobes of the cerebrum. In the forward part of the fossa are two openings: the superior orbital fissure, opening into the eye cavity; and the foramen rotundum, for the passage of the maxillary nerve, which serves the upper jaw and adjacent structures. Farther back are the conspicuous foramen ovale, an opening for the mandibular nerve to the lower jaw, and the foramen spinosum, for the middle meningeal artery, which brings blood to the dura mater.

Also in the middle fossa, near the apex of that part of the temporal bone called the petrous (stonelike) temporal bone, is the jagged opening called the foramen lacerum. The lower part of the foramen lacerum is blocked by fibrocartilage, but through its upper part passes the internal carotid artery, surrounded by a network of autonomic nerves, as it makes its way to the interior of the cranial cavity.

The delicate structures of the internal ear are not entrusted to the cranial cavity as such but lie within the petrous portion of the temporal bone in a bony labyrinth, into which the thin-walled membranous labyrinth, with its areas of sensory cells, is more or less accurately fitted but with an adequate space for protective fluid, the perilymph, between bone and membrane.

The posterior cranial fossa is above the vertebral column and the muscles of the back of the neck. The foramen magnum, the opening through which the brain and the spinal cord make connection, is in the lowest part of the fossa. Between its forward margin and the base of the dorsum sellae is a broad, smooth, bony surface called the clivus (Latin for “hill”). The bridgelike pons and the pyramid-like medulla oblongata of the brain stem lie upon the clivus and are separated from the bone only by their coverings. Near the foramen magnum are ridges for attachment of folds of the dura mater.

In the sides of the posterior cranial fossa are two transverse grooves, each of which, in part of its course, is separated by extremely thin bone from the mastoid air cells in back of the ear. Through other openings, the jugular foramina, pass the large blood channels called the sigmoid sinuses and also the 9th (glossopharyngeal), 10th (vagus), and 11th (spinal accessory) cranial nerves as they leave the cranial cavity.

The vessels, as well as the cranial nerves, are subject to injury at the openings into or from the cranial cavity and in special areas, such as close to the mastoid air cells. In the latter location, mastoiditis may lead to enough breakdown of bone to allow disease-bearing organisms to reach the other structures within the cranial cavity.

The hyoid: example of the anchoring function

The primary function of the hyoid bone is to serve as an anchoring structure for the tongue. The bone is situated at the root of the tongue in the front of the neck and between the lower jaw and the largest cartilage of the larynx, or voice box. It has no articulation with other bones and thus has a purely anchoring function.

The hyoid consists of a body, a pair of larger horns, called the greater cornua, and a pair of smaller horns, called the lesser cornua. The bone is more or less in the shape of a U, with the body forming the central part, or base, of the letter. In the act of swallowing, the hyoid bone, tongue, and larynx all move upward rapidly.

The greater cornua are the limbs of the U. Their outer ends generally are overlapped by the large sternocleidomastoid muscles. The lesser cornua are small projections from the places called, somewhat arbitrarily, the junctions of the body and the greater cornua. The hyoid bone has certain muscles of the tongue attached to it. The hyoglossus muscles originate on each side from the whole length of the greater cornua and also from the body of the hyoid. They are inserted into the posterior half or more of the sides of the tongue. The hyoid bone anchors them when they contract to depress the tongue and widen the oral cavity. The two geniohyoid muscles originate close to the point at which the two halves of the lower jaw meet; the fibres of the muscles extend downward and backward, close to the central line, to be inserted into the body of the hyoid bone. Contraction of the muscles pulls the hyoid bone upward and forward.

Inserting into the middle part of the lower border of the hyoid bone are the sternohyoids, long muscles arising from the breastbone and collarbone and running upward and toward each other in the neck.

Other muscles attached to the hyoid bone are the two mylohyoid muscles, which form a sort of diaphragm for the floor of the mouth; the thyrohyoid, arising from the thyroid cartilage, the largest cartilage of the larynx; and the omohyoid, which originates from the upper margin of the shoulder blade and from a ligament, the suprascapular ligament.

The position of the hyoid bone with relation to the muscles attached to it has been likened to that of a ship steadied as it rides when anchored “fore and aft.” Through the muscle attachments, the hyoid plays an important role in mastication, in swallowing, and in voice production.

At the beginning of a swallowing motion, the geniohyoid and mylohyoid muscles elevate the bone and the floor of the mouth simultaneously. These muscles are assisted by the stylohyoid and digastric muscles. The tongue is pressed upward against the palate, and the food is forced backward.

The facial bones and their complex functions

The upper jaws

The larger part of the skeleton of the face is formed by the maxillae. Though they are called the upper jaws, the extent and functions of the maxillae include much more than serving as complements to the lower jaw, or mandible. They form the middle and lower portion of the eye socket. They have the opening for the nose between them, beneath the lower borders of the small nasal bones. A sharp projection, the anterior nasal spine, is formed by them at the centre of the lower margin of the opening for the nose, the nasal aperture.

The infraorbital foramen, an opening into the floor of the eye socket, is the forward end of a canal through which passes the infraorbital branch of the maxillary nerve, the second division of the fifth cranial nerve. It lies slightly below the lower margin of the socket.

The alveolar margin, containing the alveoli, or sockets, in which all the upper teeth are set, forms the lower part of each maxilla, while a lateral projection from each forms the zygomatic process, forming a joint with the zygomatic, or malar, bone (cheekbone).