Magnetic properties of matter

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/magnetism
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

All matter exhibits magnetic properties when placed in an external magnetic field. Even substances like copper and aluminum that are not normally thought of as having magnetic properties are affected by the presence of a magnetic field such as that produced by either pole of a bar magnet. Depending on whether there is an attraction or repulsion by the pole of a magnet, matter is classified as being either paramagnetic or diamagnetic, respectively. A few materials, notably iron, show a very large attraction toward the pole of a permanent bar magnet; materials of this kind are called ferromagnetic.

In 1845 Faraday became the first to classify substances as either diamagnetic or paramagnetic. He based this classification on his observation of the force exerted on substances in an inhomogeneous magnetic field. At moderate field strengths, the magnetization M of a substance is linearly proportional to the strength of the applied field H. The magnetization is specified by the magnetic susceptibility χ (previously labeled χm), defined by the relation M = χH. A sample of volume V placed in a field H directed in the x-direction and increasing in that direction at a rate dH/dx will experience a force in the x-direction of F = χμ0VH (dH/dx). If the magnetic susceptibility χ is positive, the force is in the direction of increasing field strength, whereas if χ is negative, it is in the direction of decreasing field strength. Measurement of the force F in a known field H with a known gradient dH/dx is the basis of a number of accurate methods of determining χ.

Substances for which the magnetic susceptibility is negative (e.g., copper and silver) are classified as diamagnetic. The susceptibility is small, on the order of −10−5 for solids and liquids and −10−8 for gases. A characteristic feature of diamagnetism is that the magnetic moment per unit mass in a given field is virtually constant for a given substance over a very wide range of temperatures. It changes little between solid, liquid, and gas; the variation in the susceptibility between solid or liquid and gas is almost entirely due to the change in the number of molecules per unit volume. This indicates that the magnetic moment induced in each molecule by a given field is primarily a property characteristic of the molecule.

Substances for which the magnetic susceptibility is positive are classed as paramagnetic. In a few cases (including most metals), the susceptibility is independent of temperature, but in most compounds it is strongly temperature dependent, increasing as the temperature is lowered. Measurements by the French physicist Pierre Curie in 1895 showed that for many substances the susceptibility is inversely proportional to the absolute temperature T; that is, χ = C/T. This approximate relationship is known as Curie’s law and the constant C as the Curie constant. A more accurate equation is obtained in many cases by modifying the above equation to χ = C/(T − θ), where θ is a constant. This equation is called the Curie–Weiss law (after Curie and Pierre-Ernest Weiss, another French physicist). From the form of this last equation, it is clear that at the temperature T = θ, the value of the susceptibility becomes infinite. Below this temperature, the material exhibits spontaneous magnetization—i.e., it becomes ferromagnetic. Its magnetic properties are then very different from those in the paramagnetic or high-temperature phase. In particular, although its magnetic moment can be changed by the application of a magnetic field, the value of the moment attained in a given field is not always the same; it depends on the previous magnetic, thermal, and mechanical treatment of the sample.