Directing meteoroids to Earth

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/meteor
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: falling star, shooting star

There is compelling evidence that nearly all meteoroids that reach the ground and can be studied as meteorites are derived from the asteroid belt. Ideally, scientists would like to know which asteroids are the sources of particular types of meteorites and the mechanisms by which meteorites are transported from the asteroid belt to Earth. The question of which meteorites came from which asteroids has only begun to be answered with exploration of asteroids by spacecraft. For example, the Dawn spacecraft identified the HED meteorites as originating from the asteroid Vesta. Nevertheless, there is considerable information about how they got to Earth.

Hundreds of thousands of asteroids have been identified orbiting between Mars and Jupiter, although there may be more than a million such objects greater than 1 km across and many more smaller ones. These bodies have orbital eccentricities and inclinations great enough that they collide with one another at velocities averaging about 5 km per second. Because of this, few asteroids larger than about 75 km in diameter have survived collisional destruction over the entire history of the solar system. The present-day smaller asteroids consist of debris formed by the fragmentation of larger asteroids that is caused by this natural grinding process. The grinding extends down through yet smaller meteoroidal bodies to fine dust.

The length of time that meteoroids spent in space as small meteoroids (a few metres across or less) can be estimated from the effect of their exposure to high-energy cosmic rays in the space environment (see meteorite: Cosmic-ray exposure ages of meteorites). For chondritic meteorites, there are significantly fewer older ones than younger ones. Most ordinary chondrites have exposure ages of less than 50 million years and most carbonaceous chondrites less than 20 million years. Achondrites, another stony type, have ages that cluster between 20 and 30 million years. Iron meteorites have a much broader range of exposure ages; some are between one and two billion years old. To some extent the ranges of exposure ages reflect the time it takes for meteoroid orbits to become Earth-crossing, but for the most part they are determined by collisional lifetimes, the characteristic time a meteoroid can exist before suffering a catastrophic collision. For most meteorite types, the time it takes for approximately half of a population to be eliminated by collisions is about 5–10 million years. The longer exposure ages of iron meteorites suggest that their greater strength allows them to survive longer in space.

Only two processes are known that can put meteoroidal fragments into Earth-crossing orbits on the short timescales indicated by their cosmic-ray exposure ages. These processes are direct collisional ejection from the asteroid belt and gravitational acceleration by dynamic resonances with the planets. As mentioned above, collisions at velocities of 5 km per second are relatively common in the asteroid belt. In such a collision, some material is ejected at the velocity needed to put it into an Earth-crossing orbit, but the quantity is small, and most of it is pulverized by the associated shock pressures. High-velocity ejection is the likely explanation for those meteorites determined to have come from Mars or the Moon, but it completely fails to provide the observed quantity of meteorites from the asteroid belt.

Resonance mechanisms are believed to be of much greater importance in sending material toward Earth. These resonances efficiently expel material from the belt, producing regions in which the asteroid population is depleted. Such regions are known as Kirkwood gaps after their discoverer, the 19th-century American astronomer Daniel Kirkwood (see asteroid: Distribution and Kirkwood gaps). One of the most prominent of these gaps lies at a distance of about 2.5 astronomical units (AU) from the Sun. (One astronomical unit is the average distance from Earth to the Sun—about 150 million km [93 million miles].) An asteroidal fragment orbiting the Sun near 2.5 AU completes three revolutions in the time that Jupiter, the most massive planet in the solar system and a strong source of gravitational perturbations, executes one revolution. It is thus said to be in a 3:1 resonance with the planet. The regular nudges resulting from the resonance cause the orbit of the asteroidal fragment to become chaotic, and its perihelion (the point of its orbit nearest the Sun) becomes shifted inside Earth’s orbit over a period of about one million years. Numerical simulations on computers support the idea that the 3:1 resonance is one of the principal mechanisms that inject asteroidal material into ultimately Earth-crossing orbits.

If gravitational resonance with Jupiter is an efficient mechanism for removing material from the asteroid belt, one might expect the region close to a strong resonance to be cleared of material over the lifetime of the solar system so that by now nothing would be left to send into Earth-crossing orbits. A number of processes, however, cause asteroids to migrate within the asteroid belt, thereby maintaining a constant supply of material to the resonances.

Meteoroids less than a few hundred micrometres across—i.e., interplanetary dust particles—come to Earth from the asteroid belt via a rather different mechanism than the larger ones. Interaction with solar radiation causes them to spiral into Earth-crossing orbits from the asteroid belt through a process called Poynting-Robertson drag. The time it takes a particle to traverse the distance from the asteroid belt to Earth depends inversely on its radius and where in the asteroid belt it started out. For 10–50-μm dust particles, traverse time is calculated to be about 100,000 years. (Particles that are much smaller than a micrometre are actually blown out of the solar system by radiation pressure from the Sun.) Estimates of cosmic-ray exposure ages for micrometeoroids collected on Earth are broadly consistent with their traverse times calculated from the Poynting-Robertson drag process. In principle, some dust particles could be much younger than the calculated traverse times, either because they were produced in collisions of larger Earth-crossing objects or because they are not asteroidal in origin but rather have been shed by comets during comparatively recent passages through the inner solar system.

Conel M.O'D. Alexander George W. Wetherill