nebula

astronomy
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/nebula
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: galactic nebula, gaseous nebula
Latin:
“mist” or “cloud”
Plural:
nebulae or nebulas

nebula, any of the various tenuous clouds of gas and dust that occur in interstellar space. The term was formerly applied to any object outside the solar system that had a diffuse appearance rather than a pointlike image, as in the case of a star. This definition, adopted at a time when very distant objects could not be resolved into great detail, unfortunately includes two unrelated classes of objects: the extragalactic nebulae, now called galaxies, which are enormous collections of stars and gas, and the galactic nebulae, which are composed of the interstellar medium (the gas between the stars, with its accompanying small solid particles) within a single galaxy. Today the term nebula generally refers exclusively to the interstellar medium.

In a spiral galaxy the interstellar medium makes up 3 to 5 percent of the galaxy’s mass, but within a spiral arm its mass fraction increases to about 20 percent. About 1 percent of the mass of the interstellar medium is in the form of “dust”—small solid particles that are efficient in absorbing and scattering radiation. Much of the rest of the mass within a galaxy is concentrated in visible stars, but there is also some form of dark matter that accounts for a substantial fraction of the mass in the outer regions.

The most conspicuous property of interstellar gas is its clumpy distribution on all size scales observed, from the size of the entire Milky Way Galaxy (about 1020 metres, or hundreds of thousands of light-years) down to the distance from Earth to the Sun (about 1011 metres, or a few light-minutes). The large-scale variations are seen by direct observation, and the small-scale variations are observed by fluctuations in the intensity of radio waves, similar to the “twinkling” of starlight caused by unsteadiness in Earth’s atmosphere. Various regions exhibit an enormous range of densities and temperatures. Within the Galaxy’s spiral arms about half the mass of the interstellar medium is concentrated in molecular clouds, in which hydrogen occurs in molecular form (H2) and temperatures are as low as 10 kelvins (K). These clouds are inconspicuous optically and are detected principally by their carbon monoxide (CO) emissions in the millimetre wavelength range. Their densities in the regions studied by CO emissions are typically 1,000 H2 molecules per cubic cm. At the other extreme is the gas between the clouds, with a temperature of 10 million K and a density of only 0.001 H+ ion per cubic cm. Such gas is produced by supernovae, the violent explosions of unstable stars.

This article surveys the basic varieties of galactic nebulae distinguished by astronomers and their chemical composition and physical properties.

Classes of nebulae

All nebulae observed in the Milky Way Galaxy are forms of interstellar matter—namely, the gas between the stars that is almost always accompanied by solid grains of cosmic dust. Their appearance differs widely, depending not only on the temperature and density of the material observed but also on how the material is spatially situated with respect to the observer. Their chemical composition, however, is fairly uniform; it corresponds to the composition of the universe in general in that approximately 90 percent of the constituent atoms are hydrogen and nearly all the rest are helium, with oxygen, carbon, neon, nitrogen, and the other elements together making up about two atoms per thousand. On the basis of appearance, nebulae can be divided into two broad classes: dark nebulae and bright nebulae. Dark nebulae appear as irregularly shaped black patches in the sky and blot out the light of the stars that lie beyond them. Bright nebulae appear as faintly luminous glowing surfaces; they either emit their own light or reflect the light of nearby stars.

M101 (NGC 5457, The Pinwheel Galaxy). Hubble Space Telescope image of face-on spiral galaxy Messier 101 (M101). Largest most detailed photo of a spiral galaxy that has ever been released from Hubble. Created from 1994-2003
Britannica Quiz
Everything in Space in a 25-Minute Quiz

Dark nebulae are very dense and cold molecular clouds; they contain about half of all interstellar material. Typical densities range from hundreds to millions (or more) of hydrogen molecules per cubic centimetre. These clouds are the sites where new stars are formed through the gravitational collapse of some of their parts. Most of the remaining gas is in the diffuse interstellar medium, relatively inconspicuous because of its very low density (about 0.1 hydrogen atom per cubic cm) but detectable by its radio emission of the 21-cm line of neutral hydrogen.

Bright nebulae are comparatively dense clouds of gas within the diffuse interstellar medium. They have several subclasses: (1) reflection nebulae, (2) H II regions, (3) diffuse ionized gas, (4) planetary nebulae, and (5) supernova remnants.

Get Unlimited Access
Try Britannica Premium for free and discover more.

Reflection nebulae reflect the light of a nearby star from their constituent dust grains. The gas of reflection nebulae is cold, and such objects would be seen as dark nebulae if it were not for the nearby light source.

H II regions are clouds of hydrogen ionized (separated into positive H+ ions and free electrons) by a neighbouring hot star. The star must be of stellar type O or B, the most massive and hottest of normal stars in the Galaxy, in order to produce enough of the radiation required to ionize the hydrogen.

Diffuse ionized gas, so pervasive among the nebular clouds, is a major component of the Galaxy. It is observed by faint emissions of positive hydrogen, nitrogen, and sulfur ions (H+, N+, and S+) detectable in all directions. These emissions collectively require far more power than the much more spectacular H II regions, planetary nebulae, or supernova remnants that occupy a tiny fraction of the volume.

Planetary nebulae are ejected from stars that are dying but are not massive enough to become supernovae—namely, red giant stars. That is to say, a red giant has shed its outer envelope in a less-violent event than a supernova explosion and has become an intensely hot star surrounded by a shell of material that is expanding at a speed of tens of kilometres per second. Planetary nebulae typically appear as rather round objects of relatively high surface brightness. Their name is derived from their superficial resemblance to planets—i.e., their regular appearance when viewed telescopically as compared with the chaotic forms of other types of nebula.

Supernova remnants are the clouds of gas expanding at speeds of hundreds or even thousands of kilometres per second from comparatively recent explosions of massive stars. If a supernova remnant is younger than a few thousand years, it may be assumed that the gas in the nebula was mostly ejected by the exploded star. Otherwise, the nebula would consist chiefly of interstellar gas that has been swept up by the expanding remnant of older objects.