Origin of salt domes.

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/salt-dome
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

In general, salt structures associated with folds have been linked with the same forces that caused the folding. Salt structures in areas without any apparent folding, however, puzzled early geologists and gave rise to a bewildering series of hypotheses. It is now generally agreed that salt structures (and diapiric or piercement structures) develop as the result of gravitational forces, tectonic forces, or some combination of these forces, at the same time or with one force following the other. Whatever the precise circumstance, development of diapiric structures requires a rock that flows.

Although rock flow is difficult to visualize because of slow rates of movement, its results can be clearly seen: stonework that sags, mine and tunnel openings that flow shut, and glaciers of rock salt that move down mountainsides with all the features of glaciers of ice. Given very long periods of time and the relatively high temperature and pressure due to depth of burial, considerable movement of a relatively plastic material such as salt can result. A movement of one millimetre (0.039 inch) a year, for example, over a period of 1,000,000 years would produce a net movement of 1,000 m. The most common rocks that flow are halite, sylvite, gypsum, and high-pressure shale. These rocks also have densities that are lower than consolidated rock such as sandstone, and if buried by sandstone they would be gravitationally unstable. All of them are deposited by normal processes of sedimentation and are widespread in sedimentary strata.

Study of models and natural salt structures have led to a reconstruction of the sequence of events in the development of salt domes (shown in Figure 2). First, thick salt is deposited and buried by denser sedimentary strata. The salt and overlying strata become unstable and salt begins to flow from an undeformed bed to a rounded salt pillow. Flow continues into the centre of the pillow, doming the overlying strata; at the same time the area from which the salt flowed subsides, forming a rim syncline. The strata overlying the salt, because they are literally spread apart, are subject to tension, and fractures (faults) develop. Eventually, the salt breaks through the centre of the domed area, giving rise to a plug-shaped salt mass in the centre of domed, upturned, and pierced strata. Upward growth of the salt continues apace with deposition of additional strata, and the salt mass tends to maintain its position at or near the surface. If the salt supply to the growing dome is exhausted during growth, development ceases at whatever stage the dome has reached, and the dome is buried.

Distribution of salt structures.

Salt structures develop in any sedimentary basin in which thick salt deposits were later covered with thick sedimentary strata or tectonically deformed or both. With the exception of the shield areas, salt structures are widespread. By their very nature, the classic salt domes generated by gravitational instability alone are limited to areas that have not been subject to significant tectonic stress. Some salt domes do, however, occur in regions that were subject to tectonic stress. Three of the many areas of salt structures in the world are representative of all; these are the Gulf of Mexico region of North America, the North German–North Sea area of Europe, and the Iraq–Iran–Arabian Peninsula of the Middle East.

Economic significance of salt domes.

Salt domes make excellent traps for hydrocarbons because surrounding sedimentary strata are domed upward and blocked off. Major accumulations of oil and natural gas are associated with domes in the United States, Mexico, the North Sea, Germany, and Romania. In the Gulf Coastal Plain of Texas and Louisiana, salt domes will be a significant source of hydrocarbons for some years to come. Huge supplies of oil have been found in salt dome areas off the coast of Louisiana. Some individual salt domes in this region are believed to have reserves of more than 500,000,000 barrels of oil. Salt domes in northern Germany have produced oil for many years. Exploration for salt dome oil in the North Sea has extended production offshore.

The cap rock of shallow salt domes in the Gulf Coast contains large quantities of elemental sulfur. Salt domes are major sources of salt and potash in the Gulf Coast and Germany; halite and sylvite are extracted from domes by underground mining and by brine recovery.

Salt domes have also been utilized for underground storage of liquefied propane gas. Storage “bottles” are made by drilling into the salt and then forming a cavity by subsequent solution. Such cavities, because of their impermeability, also have been considered as sites for disposal of radioactive wastes.