print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/scrubland
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: heathland, scrub, shrubland
Also called:
shrubland, heathland, or chaparral

Scrublands typically grow under conditions of high environmental stress. The typical climatic environment experienced by scrublands includes long periods of hot, dry weather in which lack of moisture is a limiting factor for plant growth. Furthermore, soil nutrient levels typically are very low. These factors restrict rates of plant photosynthesis. There may be a burst of growth during briefly favourable conditions, such as in spring in Mediterranean climatic regions, but productivity overall is not high. (For a full discussion of productivity see biosphere: The organism and the environment: Resources of the biosphere.)

The dominant shrubs may be deciduous, losing their leaves for significant periods of time when moisture is in short supply; if they are evergreen their leaves are small and tough and total leaf area is relatively low. They also typically have a substantial proportion of their biomass (dry weight of organic matter in an area) in the form of extensive root systems or lignotubers or other large underground organs. Only about half of the living vegetation comprises aboveground shoots, and only a small part of that is in the form of leaves or other green parts such as stems in which photosynthesis takes place. It is therefore easy to see why production of new plant material is slow.

Some of the most complete information on scrubland productivity has been assembled from data compiled on Californian chaparral. While values derived from studies of scrublands in climatically comparable parts of France and Greece are similar, greater variation occurs in other shrub-dominated vegetation in less similar environments.

Chaparral 1.5 metres (4.9 feet) tall had a biomass of 46.2 metric tons per hectare, of which 16.7 was woody shoots, 3.7 leaves, 12.2 roots, and 13.6 litter on the ground. The annual accumulation of aboveground biomass in that system was 4.12 metric tons per hectare, of which 2.82 metric tons consisted of litter, with 2.64 metric tons of litter decomposing in the same period.

While such values typically demonstrate steady accumulation of biomass—in this case an annual aboveground increment of 0.13 metric tons per hectare—they do not take into account the occasional removal of aboveground parts through episodic disturbance, most commonly through fire. Productivity is more rapid during early stages of post-fire regrowth. For example, in one stand of French garigue, as the scrubland increased in height from 0.2 metres to 1.5 metres over a period from 1 to 10 years after a fire, its productivity declined from 4.7 to 3.2 metric tons per hectare per year.

Jeremy M.B. Smith