print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://lolitatops.com/science/space-weather
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

Communication from the ground to satellites is affected by space weather as a result of perturbations of the ionosphere, which can reflect, refract, or absorb radio waves. This includes radio signals from Global Positioning System (GPS) satellites. Space weather can change the density structure of the ionosphere by creating areas of enhanced density. This modification of the ionosphere makes GPS less accurate and can even lead to a complete loss of the signal because the ionosphere can act as a lens or a mirror to radio waves traveling through it. Because the ionosphere has a different refractive index from the layers above and below it, radio waves are “bent” (refracted) as they pass from one layer to another. Under certain conditions and broadcast frequencies, the radio waves can be absorbed or even completely reflected. Sharp and localized differences (or gradients) in the density of the ionosphere also contribute significantly to the effects of space weather on satellite communication and navigation. These gradients become most pronounced during geomagnetic storms.

Effects on Earth’s surface

The greatest potential damage caused by space weather in economic terms would be the destruction of infrastructure required for continent-sized power distribution systems. The electric currents driven by the coupling of the solar wind and the interplanetary magnetic field with the geomagnetic field—which during the 19th century flowed through telegraph wires—can now find their way into electric power transmission lines with potentially devastating consequences. The enhanced currents can damage or destroy electrical transformers, causing a cascade of power failures across a large portion of the electric grid. For example, a storm during the 1989 solar maximum caused a massive power outage in Canada when transformers failed in Quebec. It has been estimated that if a geomagnetic storm like that of 1859 hit today, a large fraction of the North American power grid could be disabled, with estimated recovery times of months to years and financial losses of hundreds of billions of dollars.

Forecasting

The U.S. government has developed a Space Weather Prediction Center (SWPC) as part of the National Oceanic and Atmospheric Administration. The SWPC is based in Boulder, Colo., and observes the Sun in real time from both ground-based observatories and satellites in order to predict geomagnetic storms. Satellites stationed at geosynchronous orbit and at the first Lagrangian point measure charged particles and the solar and interplanetary magnetic fields. Scientists can combine these observations with empirical models of Earth’s space environment and thus forecast space weather for the government, power companies, airlines, and satellite communication and navigation providers and users from around the world.

Mark Moldwin