print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also called:
elementary particle

News

'Spooky' quantum entanglement discovered inside individual protons for 1st time ever Jan. 17, 2025, 5:13 AM ET (Live Science)
A major new neutrino experiment is nearing completion Jan. 3, 2025, 4:45 AM ET (Science News)

Two years after the work of Goudsmit and Uhlenbeck, the English theorist P.A.M. Dirac provided a sound theoretical background for the concept of electron spin. In order to describe the behaviour of an electron in an electromagnetic field, Dirac introduced the German-born physicist Albert Einstein’s theory of special relativity into quantum mechanics. Dirac’s relativistic theory showed that the electron must have spin and a magnetic moment, but it also made what seemed a strange prediction. The basic equation describing the allowed energies for an electron would admit two solutions, one positive and one negative. The positive solution apparently described normal electrons. The negative solution was more of a mystery; it seemed to describe electrons with positive rather than negative charge.

The mystery was resolved in 1932, when Carl Anderson, an American physicist, discovered the particle called the positron. Positrons are very much like electrons: they have the same mass and the same spin, but they have opposite electric charge. Positrons, then, are the particles predicted by Dirac’s theory, and they were the first of the so-called antiparticles to be discovered. Dirac’s theory, in fact, applies to any subatomic particle with spin 1/2; therefore, all spin-1/2 particles should have corresponding antiparticles. Matter cannot be built from both particles and antiparticles, however. When a particle meets its appropriate antiparticle, the two disappear in an act of mutual destruction known as annihilation. Atoms can exist only because there is an excess of electrons, protons, and neutrons in the everyday world, with no corresponding positrons, antiprotons, and antineutrons.

Positrons do occur naturally, however, which is how Anderson discovered their existence. High-energy subatomic particles in the form of cosmic rays continually rain down on Earth’s atmosphere from outer space, colliding with atomic nuclei and generating showers of particles that cascade toward the ground. In these showers the enormous energy of the incoming cosmic ray is converted to matter, in accordance with Einstein’s theory of special relativity, which states that E = mc2, where E is energy, m is mass, and c is the velocity of light. Among the particles created are pairs of electrons and positrons. The positrons survive for a tiny fraction of a second until they come close enough to electrons to annihilate. The total mass of each electron-positron pair is then converted to energy in the form of gamma-ray photons.

Using particle accelerators, physicists can mimic the action of cosmic rays and create collisions at high energy. In 1955 a team led by the Italian-born scientist Emilio Segrè and the American Owen Chamberlain found the first evidence for the existence of antiprotons in collisions of high-energy protons produced by the Bevatron, an accelerator at what is now the Lawrence Berkeley National Laboratory in California. Shortly afterward, a different team working on the same accelerator discovered the antineutron.

Since the 1960s physicists have discovered that protons and neutrons consist of quarks with spin 1/2 and that antiprotons and antineutrons consist of antiquarks. Neutrinos too have spin 1/2 and therefore have corresponding antiparticles known as antineutrinos. Indeed, it is an antineutrino, rather than a neutrino, that emerges when a neutron changes by beta decay into a proton. This reflects an empirical law regarding the production and decay of quarks and leptons: in any interaction the total numbers of quarks and leptons seem always to remain constant. Thus, the appearance of a lepton—the electron—in the decay of a neutron must be balanced by the simultaneous appearance of an antilepton, in this case the antineutrino.

Periodic Table of the elements concept image (chemistry)
Britannica Quiz
Facts You Should Know: The Periodic Table Quiz

In addition to such familiar particles as the proton, neutron, and electron, studies have slowly revealed the existence of more than 200 other subatomic particles. These “extra” particles do not appear in the low-energy environment of everyday human experience; they emerge only at the higher energies found in cosmic rays or particle accelerators. Moreover, they immediately decay to the more-familiar particles after brief lifetimes of only fractions of a second. The variety and behaviour of these extra particles initially bewildered scientists but have since come to be understood in terms of the quarks and leptons. In fact, only six quarks, six leptons, and their corresponding antiparticles are necessary to explain the variety and behaviour of all the subatomic particles, including those that form normal atomic matter.