print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

Food, energy prices push inflation to 3.0 pc in December Dec. 31, 2024, 2:32 AM ET (The Standard)

Syrup from the evaporators is sent to vacuum pans, where it is further evaporated, under vacuum, to supersaturation. Fine seed crystals are added, and the sugar “mother liquor” yields a solid precipitate of about 50 percent by weight crystalline sugar. Crystallization is a serial process. The first crystallization, yielding A sugar or A strike, leaves a residual mother liquor known as A molasses. The A molasses is concentrated to yield a B strike, and the low-grade B molasses is concentrated to yield C sugar and final molasses, or blackstrap. Blackstrap contains approximately 25 percent sucrose and 20 percent invert (glucose and fructose); at these levels the sugar cannot be removed economically by crystallization.

Crystal separation and drying

Crystals and mother liquor are separated in basket-type centrifuges. Continuous machines are used for C and sometimes B sugars, but batch machines are best for A sugars because of the crystal breakage that takes place in continuous centrifuges. Mother liquor is spun off the crystals, and a fine jet of water is sprayed on the sugar pressed against the wall of the centrifugal basket, reducing the syrup coating on each crystal. In modern factories, the washing process is quite extensive in an effort to produce high-purity raw sugar. Overall recovery of sugar from cane juice averages between 70 and 80 percent.

The washed sugar, dumped from the baskets onto moving belts, dries and cools on the belts as it moves to bulk storage. At this point it is pale brown to golden yellow, with a sucrose content of 97–99 percent and a moisture content of 0.5 percent. This raw sugar, the sugar of commerce, is stored in bags in countries where labour is abundant and cheap. Generally, however, it is stored in bulk and shipped loose, like grain, in dry-bulk ships to areas where it will be refined.

Raw sugar products

Open pan sugar

In industrial sugarcane processing, crystallization is conducted under vacuum in order to lower operating temperatures, but some sugar is produced in the tropics by “open pan” processes. In these processes, crudely clarified juices are boiled down in open containers until a sludgy mass of crystals can be transferred to molds. The hardened brown product is sold as panela or piloncillo in Latin America and as gur (also called jaggery) or khansari in Asia.

Plantation white sugar

Plantation white, or mill white, sugar is a white sugar commonly produced for local consumption in sugarcane-growing countries. It is produced at the factory without remelting and refining of the raw sugar. Instead, sulfur dioxide gas (produced by burning sulfur in air) is injected into extracted juice, where it bleaches juice colorants, is oxidized to sulfate, and then is neutralized by the addition of lime. (Sulfite salts are sometimes substituted for sulfur dioxide.) A white sugar results that is suitable for table use but not for food processing, because it contains all the nonsugars (including bleached or reduced colorant) present in raw sugar.

Slices of lemon pie topped with meringue.
Britannica Quiz
Baking and Baked Goods Quiz

Higher grades of plantation white are produced by a carbonatation purification process, in which carbon dioxide gas (scrubbed flue gas) is injected into juice and reacted with lime to form calcium carbonate, which absorbs and adsorbs nonsugars and is filtered off. Powdered vegetable carbon is sometimes added to increase decolorization.

As demand for high-quality white sugars increases among food processors and beverage manufacturers in tropical areas, the processes described above are being improved and replaced by “Blanco Directo” processes, in which colour-precipitating reagents remove colorants instead of temporarily bleaching them.

Sugar refining

Sugar refining is the production of high-quality sugars from remelted raw cane sugars. (“Refining” is also used in beet sugar factories to describe the remelting and recrystallization processes by which high-quality white sugars are made from lower-grade beet syrups; see below Beet sugar.) About 35 percent of cane sugar is refined; the remainder is consumed as plantation white or as raw sugar. In tropical regions, small “white end” refineries are often built to refine the raw sugar produced by cane-processing plants. Raw sugar factories produce their own steam by burning bagasse, and a reasonably efficient plant has as much as 20 percent excess bagasse. This can be burned to operate the white end refinery, or it can be used to run a distillery or even generate electricity to be sold to the local power grid.

Still, most sugar refining is conducted in the consuming regions by large refineries, which produce a range of products such as soft brown sugars, sugar cubes, and granulated sugar. At these refineries, the raw sugar is affined (washed), melted (dissolved), sent through processes of clarification and decolorization, and crystallized. Sugar products are then dried, packaged, and stored.

Affination and melting

Affination is the mingling of raw sugar with a warm, heavy syrup, which removes the molasses coating from the sugar crystal. The syrup and crystals are separated in a spinning centrifugal basket, and the crystals are further “washed” by a water spray. Washed raw sugar is fed by screw conveyor to a melter, where it is dissolved at 65 °C (150 °F) in hot, sweet water with some fresh, hot water added to obtain a raw liquor containing about 65 percent dissolved solids.

Clarification and decolorization

Melt syrup is clarified either by phosphatation, in which phosphoric acid and lime are added to form calcium phosphates, which are removed by surface scraping in a flotation clarifier, or by carbonatation, in which carbon dioxide gas and lime form calcium carbonate, which is filtered off. Colour precipitants are added to each process.

The carbonatated liquors are filtered in pressure leaf filters with the use of diatomaceous earth, a filter aid invented for sugar processing. The resultant yellow to light brown liquor is further decolorized by carbon adsorbents, such as granular activated carbon or bone charcoal, or by ion-exchange resins of acrylic or styrenic materials. Decolorization is conducted in columns in various serial or parallel conformations.

Crystallization

Fine clarified liquor is boiled to white sugar in a series of vacuum pans similar to those used in sugarcane processing. The boiling system is complicated because the purity of the fine liquor is more than 98 percent, and at least six or seven stages of boiling are necessary before the molasses is exhausted. The first three or four strikes are blended to make commercial white sugar. Special large-grain sugar (for bakery and confectionery) is boiled separately. Fine grains (sanding or fruit sugars) are usually made by sieving products of mixed grain size. Powdered icing sugar, or confectioners’ sugar, results when white granulated sugar is finely ground, sieved, and mixed with small quantities (3 percent) of starch or calcium phosphate to keep it dry. Brown sugars (light to dark) are either crystallized from a mixture of brown and yellow syrups (with caramel added for darkest colour) or made by coating white crystals with a brown-sugar syrup.

Packaging and storage

Crystalline and liquid sucrose products are dried and packaged in food-grade packaging plants. Package sizes range from individual servings to one-ton bags, packaging materials from paper to plastic-lined burlap or fabric. Sugar cubes are made by mixing white (or brown) sugar with syrup and then molding and drying.

Refineries can also produce syrups in a range of colours and flavours for the food-processing industry. Products include liquid sucrose as well as invert syrups (syrups containing all or partially inverted sucrose).