Research strategies for intentionality
- On the Web:
- PhilArchive - Information-Theoretic Philosophy of Mind (PDF) (Dec. 28, 2024)
One of Turing’s achievements was to show how computations can be specified purely mechanically, in particular without any reference to the meanings of the symbols over which the computations are defined. Contrary to the assertions of some of CRTT’s critics, notably the American philosopher John Searle, specifying computations without reference to the meanings of symbols does not imply that the symbols do not have any meaning, any more than the fact that bachelors can be specified without mentioning their eating habits implies that bachelors do not eat. In fact, the symbols involved in computations typically have a very obvious meaning—referring, for example, to bank balances, interest rates, gamma globulin levels, or anything else that can be measured numerically. But, as already noted, the meaning or content of symbols used by ordinary computers is usually derived by stipulation from the intentional states of their programmers. In contrast, the symbols involved in human mental activity presumably have intrinsic meaning or intentionality. The real problem for CRTT, therefore, is how to explain the intrinsic meaning or intentionality of symbols in the brain.
This is really just an instance of the general problem already noted of filling the explanatory gap between the physical and the intentional—the problem of answering the challenge raised by Brentano’s thesis. No remotely adequate proposal has yet been made, but there are two serious research strategies that have been pursued in various ways by different philosophers. Inspired by the aforementioned “use” view of meaning urged by Wittgenstein, Ned Block and Christopher Peacocke have developed “internalist” theories according to which meaning is constituted by some features of a symbol’s causal (or conceptual) role within the brain, specifically the inferences in which it figures. For example, it might be constitutive of the meaning of the symbol “bachelor” that it be causally connected to a symbol whose meaning is “unmarried.” Others philosophers, such as Fred Dretske, Robert Stalnaker, and Fodor, have proposed “externalist” theories according to which the meaning of a symbol in the brain is constituted by various causal relations between the symbol and the phenomenon in the external world that it represents. For example, the symbol W might represent water by virtue of some causal, covariational relation it enjoys to actual water in the world: under suitable conditions, actual water causes an electronic token of W to appear in the brain. Alternatively, perhaps the entokening of W in the brain in the presence of actual water once provided a creature’s distant ancestors with some evolutionary advantage, as suggested in the work of Ruth Millikan and Karen Neander. There have been quite rich and subtle discussions of whether the thought contents of a system (a human being or an animal) must be specified “widely,” taking into account the environment the system inhabits, as in the work of Tyler Burge, or only “narrowly,” independently of any such environment, as in the work of Gabriel Segal.
Objections and responses
A number of objections of varying levels of sophistication have been made against CRTT.
Introspection
A once-common criticism was that people’s introspective experiences of their thinking are nothing like the computational processes that CRTT proposes are constitutive of human thought. However, like most modern psychological theories since at least the time of Freud, CRTT does not purport to be an account of how a person’s psychological life appears introspectively to him, and it is perfectly compatible with the sense that many people have that they think not in words but in images, maps, or various sorts of somatic feelings. CRTT is merely a claim about the underlying processes in the brain, the surface appearances of which can be as remote from the character of those processes as the appearance of an image on a screen can be from the inner workings of a computer.